Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Frequent Directions Algorithm for Sparse Matrices (1602.00412v2)

Published 1 Feb 2016 in cs.DS

Abstract: This paper describes Sparse Frequent Directions, a variant of Frequent Directions for sketching sparse matrices. It resembles the original algorithm in many ways: both receive the rows of an input matrix $A{n \times d}$ one by one in the streaming setting and compute a small sketch $B \in R{\ell \times d}$. Both share the same strong (provably optimal) asymptotic guarantees with respect to the space-accuracy tradeoff in the streaming setting. However, unlike Frequent Directions which runs in $O(nd\ell)$ time regardless of the sparsity of the input matrix $A$, Sparse Frequent Directions runs in $\tilde{O} (nnz(A)\ell + n\ell2)$ time. Our analysis loosens the dependence on computing the Singular Value Decomposition (SVD) as a black box within the Frequent Directions algorithm. Our bounds require recent results on the properties of fast approximate SVD computations. Finally, we empirically demonstrate that these asymptotic improvements are practical and significant on real and synthetic data.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.