Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum Capacities for Entanglement Networks (1602.00401v1)

Published 1 Feb 2016 in quant-ph, cs.IT, and math.IT

Abstract: We discuss quantum capacities for two types of entanglement networks: $\mathcal{Q}$ for the quantum repeater network with free classical communication, and $\mathcal{R}$ for the tensor network as the rank of the linear operation represented by the tensor network. We find that $\mathcal{Q}$ always equals $\mathcal{R}$ in the regularized case for the samenetwork graph. However, the relationships between the corresponding one-shot capacities $\mathcal{Q}_1$ and $\mathcal{R}_1$ are more complicated, and the min-cut upper bound is in general not achievable. We show that the tensor network can be viewed as a stochastic protocol with the quantum repeater network, such that $\mathcal{R}_1$ is a natural upper bound of $\mathcal{Q}_1$. We analyze the possible gap between $\mathcal{R}_1$ and $\mathcal{Q}_1$ for certain networks, and compare them with the one-shot classical capacity of the corresponding classical network.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.