Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hadoop on HPC: Integrating Hadoop and Pilot-based Dynamic Resource Management (1602.00345v1)

Published 31 Jan 2016 in cs.DC

Abstract: High-performance computing platforms such as supercomputers have traditionally been designed to meet the compute demands of scientific applications. Consequently, they have been architected as producers and not consumers of data. The Apache Hadoop ecosystem has evolved to meet the requirements of data processing applications and has addressed many of the limitations of HPC platforms. There exist a class of scientific applications however, that need the collective capabilities of traditional high-performance computing environments and the Apache Hadoop ecosystem. For example, the scientific domains of bio-molecular dynamics, genomics and network science need to couple traditional computing with Hadoop/Spark based analysis. We investigate the critical question of how to present the capabilities of both computing environments to such scientific applications. Whereas this questions needs answers at multiple levels, we focus on the design of resource management middleware that might support the needs of both. We propose extensions to the Pilot-Abstraction to provide a unifying resource management layer. This is an important step that allows applications to integrate HPC stages (e.g. simulations) to data analytics. Many supercomputing centers have started to officially support Hadoop environments, either in a dedicated environment or in hybrid deployments using tools such as myHadoop. This typically involves many intrinsic, environment-specific details that need to be mastered, and often swamp conceptual issues like: How best to couple HPC and Hadoop application stages? How to explore runtime trade-offs (data localities vs. data movement)? This paper provides both conceptual understanding and practical solutions to the integrated use of HPC and Hadoop environments.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube