Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spanners for Directed Transmission Graphs (1601.07798v3)

Published 28 Jan 2016 in cs.CG

Abstract: Let $P \subset \mathbb{R}2$ be a planar $n$-point set such that each point $p \in P$ has an associated radius $r_p > 0$. The transmission graph $G$ for $P$ is the directed graph with vertex set $P$ such that for any $p, q \in P$, there is an edge from $p$ to $q$ if and only if $d(p, q) \leq r_p$. Let $t > 1$ be a constant. A $t$-spanner for $G$ is a subgraph $H \subseteq G$ with vertex set $P$ so that for any two vertices $p,q \in P$, we have $d_H(p, q) \leq t d_G(p, q)$, where $d_H$ and $d_G$ denote the shortest path distance in $H$ and $G$, respectively (with Euclidean edge lengths). We show how to compute a $t$-spanner for $G$ with $O(n)$ edges in $O(n (\log n + \log \Psi))$ time, where $\Psi$ is the ratio of the largest and smallest radius of a point in $P$. Using more advanced data structures, we obtain a construction that runs in $O(n \log5 n)$ time, independent of $\Psi$. We give two applications for our spanners. First, we show how to use our spanner to find a BFS tree in $G$ from any given start vertex in $O(n \log n)$ time (in addition to the time it takes to build the spanner). Second, we show how to use our spanner to extend a reachability oracle to answer geometric reachability queries. In a geometric reachability query we ask whether a vertex $p$ in $G$ can "reach" a target $q$ which is an arbitrary point in the plane (rather than restricted to be another vertex $q$ of $G$ in a standard reachability query). Our spanner allows the reachability oracle to answer geometric reachability queries with an additive overhead of $O(\log n\log \Psi)$ to the query time and $O(n \log \Psi)$ to the space.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.