Papers
Topics
Authors
Recent
2000 character limit reached

Information-theoretic limits of Bayesian network structure learning (1601.07460v4)

Published 27 Jan 2016 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: In this paper, we study the information-theoretic limits of learning the structure of Bayesian networks (BNs), on discrete as well as continuous random variables, from a finite number of samples. We show that the minimum number of samples required by any procedure to recover the correct structure grows as $\Omega(m)$ and $\Omega(k \log m + (k2/m))$ for non-sparse and sparse BNs respectively, where $m$ is the number of variables and $k$ is the maximum number of parents per node. We provide a simple recipe, based on an extension of the Fano's inequality, to obtain information-theoretic limits of structure recovery for any exponential family BN. We instantiate our result for specific conditional distributions in the exponential family to characterize the fundamental limits of learning various commonly used BNs, such as conditional probability table based networks, gaussian BNs, noisy-OR networks, and logistic regression networks. En route to obtaining our main results, we obtain tight bounds on the number of sparse and non-sparse essential-DAGs. Finally, as a byproduct, we recover the information-theoretic limits of sparse variable selection for logistic regression.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.