Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Myopic Policy Bounds for Information Acquisition POMDPs (1601.07279v1)

Published 27 Jan 2016 in cs.SY

Abstract: This paper addresses the problem of optimal control of robotic sensing systems aimed at autonomous information gathering in scenarios such as environmental monitoring, search and rescue, and surveillance and reconnaissance. The information gathering problem is formulated as a partially observable Markov decision process (POMDP) with a reward function that captures uncertainty reduction. Unlike the classical POMDP formulation, the resulting reward structure is nonlinear in the belief state and the traditional approaches do not apply directly. Instead of developing a new approximation algorithm, we show that if attention is restricted to a class of problems with certain structural properties, one can derive (often tight) upper and lower bounds on the optimal policy via an efficient myopic computation. These policy bounds can be applied in conjunction with an online branch-and-bound algorithm to accelerate the computation of the optimal policy. We obtain informative lower and upper policy bounds with low computational effort in a target tracking domain. The performance of branch-and-bounding is demonstrated and compared with exact value iteration.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.