Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Comprehensive Feature-based Robust Video Fingerprinting Using Tensor Model (1601.07270v1)

Published 27 Jan 2016 in cs.CV

Abstract: Content-based near-duplicate video detection (NDVD) is essential for effective search and retrieval, and robust video fingerprinting is a good solution for NDVD. Most existing video fingerprinting methods use a single feature or concatenating different features to generate video fingerprints, and show a good performance under single-mode modifications such as noise addition and blurring. However, when they suffer combined modifications, the performance is degraded to a certain extent because such features cannot characterize the video content completely. By contrast, the assistance and consensus among different features can improve the performance of video fingerprinting. Therefore, in the present study, we mine the assistance and consensus among different features based on tensor model, and present a new comprehensive feature to fully use them in the proposed video fingerprinting framework. We also analyze what the comprehensive feature really is for representing the original video. In this framework, the video is initially set as a high-order tensor that consists of different features, and the video tensor is decomposed via the Tucker model with a solution that determines the number of components. Subsequently, the comprehensive feature is generated by the low-order tensor obtained from tensor decomposition. Finally, the video fingerprint is computed using this feature. A matching strategy used for narrowing the search is also proposed based on the core tensor. The robust video fingerprinting framework is resistant not only to single-mode modifications, but also to the combination of them.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.