Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sequence assembly from corrupted shotgun reads (1601.07086v1)

Published 26 Jan 2016 in q-bio.GN, cs.IT, math.IT, and math.PR

Abstract: The prevalent technique for DNA sequencing consists of two main steps: shotgun sequencing, where many randomly located fragments, called reads, are extracted from the overall sequence, followed by an assembly algorithm that aims to reconstruct the original sequence. There are many different technologies that generate the reads: widely-used second-generation methods create short reads with low error rates, while emerging third-generation methods create long reads with high error rates. Both error rates and error profiles differ among methods, so reconstruction algorithms are often tailored to specific shotgun sequencing technologies. As these methods change over time, a fundamental question is whether there exist reconstruction algorithms which are robust, i.e., which perform well under a wide range of error distributions. Here we study this question of sequence assembly from corrupted reads. We make no assumption on the types of errors in the reads, but only assume a bound on their magnitude. More precisely, for each read we assume that instead of receiving the true read with no errors, we receive a corrupted read which has edit distance at most $\epsilon$ times the length of the read from the true read. We show that if the reads are long enough and there are sufficiently many of them, then approximate reconstruction is possible: we construct a simple algorithm such that for almost all original sequences the output of the algorithm is a sequence whose edit distance from the original one is at most $O(\epsilon)$ times the length of the original sequence.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.