Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Novel Memetic Feature Selection Algorithm (1601.06933v1)

Published 26 Jan 2016 in cs.LG

Abstract: Feature selection is a problem of finding efficient features among all features in which the final feature set can improve accuracy and reduce complexity. In feature selection algorithms search strategies are key aspects. Since feature selection is an NP-Hard problem; therefore heuristic algorithms have been studied to solve this problem. In this paper, we have proposed a method based on memetic algorithm to find an efficient feature subset for a classification problem. It incorporates a filter method in the genetic algorithm to improve classification performance and accelerates the search in identifying core feature subsets. Particularly, the method adds or deletes a feature from a candidate feature subset based on the multivariate feature information. Empirical study on commonly data sets of the university of California, Irvine shows that the proposed method outperforms existing methods.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.