Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tiered-Latency DRAM (TL-DRAM) (1601.06903v1)

Published 26 Jan 2016 in cs.AR

Abstract: This paper summarizes the idea of Tiered-Latency DRAM, which was published in HPCA 2013. The key goal of TL-DRAM is to provide low DRAM latency at low cost, a critical problem in modern memory systems. To this end, TL-DRAM introduces heterogeneity into the design of a DRAM subarray by segmenting the bitlines, thereby creating a low-latency, low-energy, low-capacity portion in the subarray (called the near segment), which is close to the sense amplifiers, and a high-latency, high-energy, high-capacity portion, which is farther away from the sense amplifiers. Thus, DRAM becomes heterogeneous with a small portion having lower latency and a large portion having higher latency. Various techniques can be employed to take advantage of the low-latency near segment and this new heterogeneous DRAM substrate, including hardware-based caching and software based caching and memory allocation of frequently used data in the near segment. Evaluations with simple such techniques show significant performance and energy-efficiency benefits.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube