Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Estimation of Bipartite Matchings for Record Linkage (1601.06630v1)

Published 25 Jan 2016 in stat.ME, stat.AP, and stat.ML

Abstract: The bipartite record linkage task consists of merging two disparate datafiles containing information on two overlapping sets of entities. This is non-trivial in the absence of unique identifiers and it is important for a wide variety of applications given that it needs to be solved whenever we have to combine information from different sources. Most statistical techniques currently used for record linkage are derived from a seminal paper by Fellegi and Sunter (1969). These techniques usually assume independence in the matching statuses of record pairs to derive estimation procedures and optimal point estimators. We argue that this independence assumption is unreasonable and instead target a bipartite matching between the two datafiles as our parameter of interest. Bayesian implementations allow us to quantify uncertainty on the matching decisions and derive a variety of point estimators using different loss functions. We propose partial Bayes estimates that allow uncertain parts of the bipartite matching to be left unresolved. We evaluate our approach to record linkage using a variety of challenging scenarios and show that it outperforms the traditional methodology. We illustrate the advantages of our methods merging two datafiles on casualties from the civil war of El Salvador.

Citations (79)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)