Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Robust Privacy-Utility Tradeoffs under Differential Privacy and Hamming Distortion (1601.06426v3)

Published 24 Jan 2016 in cs.IT and math.IT

Abstract: A privacy-utility tradeoff is developed for an arbitrary set of finite-alphabet source distributions. Privacy is quantified using differential privacy (DP), and utility is quantified using expected Hamming distortion maximized over the set of distributions. The family of source distribution sets (source sets) is categorized into three classes, based on different levels of prior knowledge they capture. For source sets whose convex hull includes the uniform distribution, symmetric DP mechanisms are optimal. For source sets whose probability values have a fixed monotonic ordering, asymmetric DP mechanisms are optimal. For all other source sets, general upper and lower bounds on the optimal privacy leakage are developed and a necessary and sufficient condition for tightness are established. Differentially private leakage is an upper bound on mutual information (MI) leakage: the two criteria are compared analytically and numerically to illustrate the effect of adopting a stronger privacy criterion.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube