Papers
Topics
Authors
Recent
2000 character limit reached

A Beta-Beta Achievability Bound with Applications (1601.05880v1)

Published 22 Jan 2016 in cs.IT and math.IT

Abstract: A channel coding achievability bound expressed in terms of the ratio between two Neyman-Pearson $\beta$ functions is proposed. This bound is the dual of a converse bound established earlier by Polyanskiy and Verd\'{u} (2014). The new bound turns out to simplify considerably the analysis in situations where the channel output distribution is not a product distribution, for example due to a cost constraint or a structural constraint (such as orthogonality or constant composition) on the channel inputs. Connections to existing bounds in the literature are discussed. The bound is then used to derive 1) an achievability bound on the channel dispersion of additive non-Gaussian noise channels with random Gaussian codebooks, 2) the channel dispersion of the exponential-noise channel, 3) a second-order expansion for the minimum energy per bit of an AWGN channel, and 4) a lower bound on the maximum coding rate of a multiple-input multiple-output Rayleigh-fading channel with perfect channel state information at the receiver, which is the tightest known achievability result.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.