Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AptRank: An Adaptive PageRank Model for Protein Function Prediction on Bi-relational Graphs (1601.05506v2)

Published 21 Jan 2016 in q-bio.MN and cs.SI

Abstract: Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood- and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is an application of traditional PageRank with fixed decay parameters. In contrast, AptRank uses an adaptive mechanism to improve the performance of BirgRank. We evaluate both methods in predicting protein function on yeast, fly, and human datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design three validation strategies: missing function prediction, de novo function prediction, and guided function prediction to comprehensively evaluate all six methods. We find that both BirgRank and AptRank outperform the others, especially in missing function prediction when using only 10% of the data for training. AptRank combines protein-protein associations and the GO function-function hierarchy into a two-layer network model without flattening the hierarchy into a similarity kernel. Introducing an adaptive mechanism to the traditional, fixed-parameter model of PageRank greatly improves the accuracy of protein function prediction.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.