Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Combined Compute and Storage: Configurable Memristor Arrays to Accelerate Search (1601.05273v1)

Published 20 Jan 2016 in cs.ET

Abstract: Emerging technologies present opportunities for system designers to meet the challenges presented by competing trends of big data analytics and limitations on CMOS scaling. Specifically, memristors are an emerging high-density technology where the individual memristors can be used as storage or to perform computation. The voltage applied across a memristor determines its behavior (storage vs. compute), which enables a configurable memristor substrate that can embed computation with storage. This paper explores accelerating point and range search queries as instances of the more general configurable combined compute and storage capabilities of memristor arrays. We first present MemCAM, a configurable memristor-based content addressable memory for the cases when fast, infrequent searches over large datasets are required. For frequent searches, memristor lifetime becomes a concern. To increase memristor array lifetime we introduce hybrid data structures that combine trees with MemCAM using conventional CMOS processor/cache hierarchies for the upper levels of the tree and configurable memristor technologies for lower levels. We use SPICE to analyze energy consumption and access time of memristors and use analytic models to evaluate the performance of configurable hybrid data structures. The results show that with acceptable energy consumption our configurable hybrid data structures improve performance of search intensive applications and achieve lifetime in years or decades under continuous queries. Furthermore, the configurability of memristor arrays and the proposed data structures provide opportunities to tune the trade- off between performance and lifetime and the data structures can be easily adapted to future memristors or other technologies with improved endurance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.