Papers
Topics
Authors
Recent
2000 character limit reached

A Theory of Local Matching: SIFT and Beyond (1601.05116v1)

Published 19 Jan 2016 in cs.CV and cs.LG

Abstract: Why has SIFT been so successful? Why its extension, DSP-SIFT, can further improve SIFT? Is there a theory that can explain both? How can such theory benefit real applications? Can it suggest new algorithms with reduced computational complexity or new descriptors with better accuracy for matching? We construct a general theory of local descriptors for visual matching. Our theory relies on concepts in energy minimization and heat diffusion. We show that SIFT and DSP-SIFT approximate the solution the theory suggests. In particular, DSP-SIFT gives a better approximation to the theoretical solution; justifying why DSP-SIFT outperforms SIFT. Using the developed theory, we derive new descriptors that have fewer parameters and are potentially better in handling affine deformations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube