Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scale-aware Pixel-wise Object Proposal Networks (1601.04798v3)

Published 19 Jan 2016 in cs.CV

Abstract: Object proposal is essential for current state-of-the-art object detection pipelines. However, the existing proposal methods generally fail in producing results with satisfying localization accuracy. The case is even worse for small objects which however are quite common in practice. In this paper we propose a novel Scale-aware Pixel-wise Object Proposal (SPOP) network to tackle the challenges. The SPOP network can generate proposals with high recall rate and average best overlap (ABO), even for small objects. In particular, in order to improve the localization accuracy, a fully convolutional network is employed which predicts locations of object proposals for each pixel. The produced ensemble of pixel-wise object proposals enhances the chance of hitting the object significantly without incurring heavy extra computational cost. To solve the challenge of localizing objects at small scale, two localization networks which are specialized for localizing objects with different scales are introduced, following the divide-and-conquer philosophy. Location outputs of these two networks are then adaptively combined to generate the final proposals by a large-/small-size weighting network. Extensive evaluations on PASCAL VOC 2007 show the SPOP network is superior over the state-of-the-art models. The high-quality proposals from SPOP network also significantly improve the mean average precision (mAP) of object detection with Fast-RCNN framework. Finally, the SPOP network (trained on PASCAL VOC) shows great generalization performance when testing it on ILSVRC 2013 validation set.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.