Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation (1601.04743v1)

Published 18 Jan 2016 in cs.CC and cs.CR

Abstract: We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit $C(x_1,\ldots,x_n)$ of size $s$ and degree $d$ over a field ${\mathbb F}$, and any inputs $a_1,\ldots,a_K \in {\mathbb F}n$, $\bullet$ the Prover sends the Verifier the values $C(a_1), \ldots, C(a_K) \in {\mathbb F}$ and a proof of $\tilde{O}(K \cdot d)$ length, and $\bullet$ the Verifier tosses $\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon))$ coins and can check the proof in about $\tilde{O}(K \cdot(n + d) + s)$ time, with probability of error less than $\varepsilon$. For small degree $d$, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in $c{n}$ time (for various $c < 2$) for the Permanent, $#$Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of $0$-$1$ linear programs. In general, the value of any polynomial in Valiant's class ${\sf VP}$ can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in $2{2n/3+o(n)}$ time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in $n{k/2+O(1)}$-time for counting $k$-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.