Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spectral Theory of Unsigned and Signed Graphs. Applications to Graph Clustering: a Survey (1601.04692v1)

Published 18 Jan 2016 in cs.LG and cs.DS

Abstract: This is a survey of the method of graph cuts and its applications to graph clustering of weighted unsigned and signed graphs. I provide a fairly thorough treatment of the method of normalized graph cuts, a deeply original method due to Shi and Malik, including complete proofs. The main thrust of this paper is the method of normalized cuts. I give a detailed account for K = 2 clusters, and also for K > 2 clusters, based on the work of Yu and Shi. I also show how both graph drawing and normalized cut K-clustering can be easily generalized to handle signed graphs, which are weighted graphs in which the weight matrix W may have negative coefficients. Intuitively, negative coefficients indicate distance or dissimilarity. The solution is to replace the degree matrix by the matrix in which absolute values of the weights are used, and to replace the Laplacian by the Laplacian with the new degree matrix of absolute values. As far as I know, the generalization of K-way normalized clustering to signed graphs is new. Finally, I show how the method of ratio cuts, in which a cut is normalized by the size of the cluster rather than its volume, is just a special case of normalized cuts.

Citations (59)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)