Papers
Topics
Authors
Recent
2000 character limit reached

Spectral Theory of Unsigned and Signed Graphs. Applications to Graph Clustering: a Survey (1601.04692v1)

Published 18 Jan 2016 in cs.LG and cs.DS

Abstract: This is a survey of the method of graph cuts and its applications to graph clustering of weighted unsigned and signed graphs. I provide a fairly thorough treatment of the method of normalized graph cuts, a deeply original method due to Shi and Malik, including complete proofs. The main thrust of this paper is the method of normalized cuts. I give a detailed account for K = 2 clusters, and also for K > 2 clusters, based on the work of Yu and Shi. I also show how both graph drawing and normalized cut K-clustering can be easily generalized to handle signed graphs, which are weighted graphs in which the weight matrix W may have negative coefficients. Intuitively, negative coefficients indicate distance or dissimilarity. The solution is to replace the degree matrix by the matrix in which absolute values of the weights are used, and to replace the Laplacian by the Laplacian with the new degree matrix of absolute values. As far as I know, the generalization of K-way normalized clustering to signed graphs is new. Finally, I show how the method of ratio cuts, in which a cut is normalized by the size of the cluster rather than its volume, is just a special case of normalized cuts.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.