Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Placing Dynamic Content in Caches with Small Population (1601.03926v1)

Published 15 Jan 2016 in cs.NI

Abstract: This paper addresses a fundamental limitation for the adoption of caching for wireless access networks due to small population sizes. This shortcoming is due to two main challenges: (i) making timely estimates of varying content popularity and (ii) inferring popular content from small samples. We propose a framework which alleviates such limitations. To timely estimate varying popularity in a context of a single cache we propose an Age-Based Threshold (ABT) policy which caches all contents requested more times than a threshold $\widetilde N(\tau)$, where $\tau$ is the content age. We show that ABT is asymptotically hit rate optimal in the many contents regime, which allows us to obtain the first characterization of the optimal performance of a caching system in a dynamic context. We then address small sample sizes focusing on $L$ local caches and one global cache. On the one hand we show that the global cache learns L times faster by aggregating all requests from local caches, which improves hit rates. On the other hand, aggregation washes out local characteristics of correlated traffic which penalizes hit rate. This motivates coordination mechanisms which combine global learning of popularity scores in clusters and LRU with prefetching.

Citations (139)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.