Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Privacy For Distributed Machine Learning Over Network (1601.03466v3)

Published 14 Jan 2016 in cs.LG

Abstract: Privacy-preserving distributed machine learning becomes increasingly important due to the recent rapid growth of data. This paper focuses on a class of regularized empirical risk minimization (ERM) machine learning problems, and develops two methods to provide differential privacy to distributed learning algorithms over a network. We first decentralize the learning algorithm using the alternating direction method of multipliers (ADMM), and propose the methods of dual variable perturbation and primal variable perturbation to provide dynamic differential privacy. The two mechanisms lead to algorithms that can provide privacy guarantees under mild conditions of the convexity and differentiability of the loss function and the regularizer. We study the performance of the algorithms, and show that the dual variable perturbation outperforms its primal counterpart. To design an optimal privacy mechanisms, we analyze the fundamental tradeoff between privacy and accuracy, and provide guidelines to choose privacy parameters. Numerical experiments using customer information database are performed to corroborate the results on privacy and utility tradeoffs and design.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.