Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Blind Image Denoising via Dependent Dirichlet Process Tree (1601.03117v1)

Published 13 Jan 2016 in cs.CV and stat.ML

Abstract: Most existing image denoising approaches assumed the noise to be homogeneous white Gaussian distributed with known intensity. However, in real noisy images, the noise models are usually unknown beforehand and can be much more complex. This paper addresses this problem and proposes a novel blind image denoising algorithm to recover the clean image from noisy one with the unknown noise model. To model the empirical noise of an image, our method introduces the mixture of Gaussian distribution, which is flexible enough to approximate different continuous distributions. The problem of blind image denoising is reformulated as a learning problem. The procedure is to first build a two-layer structural model for noisy patches and consider the clean ones as latent variable. To control the complexity of the noisy patch model, this work proposes a novel Bayesian nonparametric prior called "Dependent Dirichlet Process Tree" to build the model. Then, this study derives a variational inference algorithm to estimate model parameters and recover clean patches. We apply our method on synthesis and real noisy images with different noise models. Comparing with previous approaches, ours achieves better performance. The experimental results indicate the efficiency of the proposed algorithm to cope with practical image denoising tasks.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.