Emergent Mind

Polynomial-Sized Topological Approximations Using The Permutahedron

(1601.02732)
Published Jan 12, 2016 in cs.CG and math.AT

Abstract

Classical methods to model topological properties of point clouds, such as the Vietoris-Rips complex, suffer from the combinatorial explosion of complex sizes. We propose a novel technique to approximate a multi-scale filtration of the Rips complex with improved bounds for size: precisely, for $n$ points in $\mathbb{R}d$, we obtain a $O(d)$-approximation with at most $n2{O(d \log k)}$ simplices of dimension $k$ or lower. In conjunction with dimension reduction techniques, our approach yields a $O(\mathrm{polylog} (n))$-approximation of size $n{O(1)}$ for Rips filtrations on arbitrary metric spaces. This result stems from high-dimensional lattice geometry and exploits properties of the permutahedral lattice, a well-studied structure in discrete geometry. Building on the same geometric concept, we also present a lower bound result on the size of an approximate filtration: we construct a point set for which every $(1+\epsilon)$-approximation of the \v{C}ech filtration has to contain $n{\Omega(\log\log n)}$ features, provided that $\epsilon <\frac{1}{\log{1+c} n}$ for $c\in(0,1)$.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.