Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Note On Vertex Distinguishing Edge colorings of Trees (1601.02601v1)

Published 9 Jan 2016 in math.CO and cs.DM

Abstract: A proper edge coloring of a simple graph $G$ is called a vertex distinguishing edge coloring (vdec) if for any two distinct vertices $u$ and $v$ of $G$, the set of the colors assigned to the edges incident to $u$ differs from the set of the colors assigned to the edges incident to $v$. The minimum number of colors required for all vdecs of $G$ is denoted by $\chi\,'s(G)$ called the vdec chromatic number of $G$. Let $n_d(G)$ denote the number of vertices of degree $d$ in $G$. In this note, we show that a tree $T$ with $n_2(T)\leq n_1(T)$ holds $\chi\,'_s(T)=n_1(T)+1$ if its diameter $D(T)=3$ or one of two particular trees with $D(T) =4$, and $\chi\,'_s(T)=n_1(T)$ otherwise; furthermore $\chi\,'{es}(T)=\chi\,'s(T)$ when $|E(T)|\leq 2(n_1(T)+1)$, where $\chi\,'{es}(T)$ is the equitable vdec chromatic number of $T$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.