Kernelized LRR on Grassmann Manifolds for Subspace Clustering (1601.02124v1)
Abstract: Low rank representation (LRR) has recently attracted great interest due to its pleasing efficacy in exploring low-dimensional sub- space structures embedded in data. One of its successful applications is subspace clustering, by which data are clustered according to the subspaces they belong to. In this paper, at a higher level, we intend to cluster subspaces into classes of subspaces. This is naturally described as a clustering problem on Grassmann manifold. The novelty of this paper is to generalize LRR on Euclidean space onto an LRR model on Grassmann manifold in a uniform kernelized LRR framework. The new method has many applications in data analysis in computer vision tasks. The proposed models have been evaluated on a number of practical data analysis applications. The experimental results show that the proposed models outperform a number of state-of-the-art subspace clustering methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.