Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

An O(m log n) Algorithm for Stuttering Equivalence and Branching Bisimulation (1601.01478v1)

Published 7 Jan 2016 in cs.LO and cs.DS

Abstract: We provide a new algorithm to determine stuttering equivalence with time complexity $O(m \log n)$, where $n$ is the number of states and $m$ is the number of transitions of a Kripke structure. This algorithm can also be used to determine branching bisimulation in $O(m(\log |\mathit{Act}|+ \log n))$ time where $\mathit{Act}$ is the set of actions in a labelled transition system. Theoretically, our algorithm substantially improves upon existing algorithms which all have time complexity $O(m n)$ at best. Moreover, it has better or equal space complexity. Practical results confirm these findings showing that our algorithm can outperform existing algorithms with orders of magnitude, especially when the sizes of the Kripke structures are large. The importance of our algorithm stretches far beyond stuttering equivalence and branching bisimulation. The known $O(m n)$ algorithms were already far more efficient (both in space and time) than most other algorithms to determine behavioural equivalences (including weak bisimulation) and therefore it was often used as an essential preprocessing step. This new algorithm makes this use of stuttering equivalence and branching bisimulation even more attractive.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.