Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Common Variable Learning and Invariant Representation Learning using Siamese Neural Networks (1512.08806v3)

Published 29 Dec 2015 in stat.ML, cs.LG, and cs.NE

Abstract: We consider the statistical problem of learning common source of variability in data which are synchronously captured by multiple sensors, and demonstrate that Siamese neural networks can be naturally applied to this problem. This approach is useful in particular in exploratory, data-driven applications, where neither a model nor label information is available. In recent years, many researchers have successfully applied Siamese neural networks to obtain an embedding of data which corresponds to a "semantic similarity". We present an interpretation of this "semantic similarity" as learning of equivalence classes. We discuss properties of the embedding obtained by Siamese networks and provide empirical results that demonstrate the ability of Siamese networks to learn common variability.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)