Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Feedforward Sequential Memory Networks: A New Structure to Learn Long-term Dependency (1512.08301v2)

Published 28 Dec 2015 in cs.NE

Abstract: In this paper, we propose a novel neural network structure, namely \emph{feedforward sequential memory networks (FSMN)}, to model long-term dependency in time series without using recurrent feedback. The proposed FSMN is a standard fully-connected feedforward neural network equipped with some learnable memory blocks in its hidden layers. The memory blocks use a tapped-delay line structure to encode the long context information into a fixed-size representation as short-term memory mechanism. We have evaluated the proposed FSMNs in several standard benchmark tasks, including speech recognition and LLMling. Experimental results have shown FSMNs significantly outperform the conventional recurrent neural networks (RNN), including LSTMs, in modeling sequential signals like speech or language. Moreover, FSMNs can be learned much more reliably and faster than RNNs or LSTMs due to the inherent non-recurrent model structure.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.