Papers
Topics
Authors
Recent
2000 character limit reached

Statistical Learning under Nonstationary Mixing Processes (1512.08064v2)

Published 26 Dec 2015 in cs.LG and stat.ML

Abstract: We study a special case of the problem of statistical learning without the i.i.d. assumption. Specifically, we suppose a learning method is presented with a sequence of data points, and required to make a prediction (e.g., a classification) for each one, and can then observe the loss incurred by this prediction. We go beyond traditional analyses, which have focused on stationary mixing processes or nonstationary product processes, by combining these two relaxations to allow nonstationary mixing processes. We are particularly interested in the case of $\beta$-mixing processes, with the sum of changes in marginal distributions growing sublinearly in the number of samples. Under these conditions, we propose a learning method, and establish that for bounded VC subgraph classes, the cumulative excess risk grows sublinearly in the number of predictions, at a quantified rate.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.