Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Diversity Enhancement for Micro-Differential Evolution (1512.07980v2)

Published 25 Dec 2015 in cs.NE

Abstract: The differential evolution (DE) algorithm suffers from high computational time due to slow nature of evaluation. In contrast, micro-DE (MDE) algorithms employ a very small population size, which can converge faster to a reasonable solution. However, these algorithms are vulnerable to a premature convergence as well as to high risk of stagnation. In this paper, MDE algorithm with vectorized random mutation factor (MDEVM) is proposed, which utilizes the small size population benefit while empowers the exploration ability of mutation factor through randomizing it in the decision variable level. The idea is supported by analyzing mutation factor using Monte-Carlo based simulations. To facilitate the usage of MDE algorithms with very-small population sizes, new mutation schemes for population sizes less than four are also proposed. Furthermore, comprehensive comparative simulations and analysis on performance of the MDE algorithms over various mutation schemes, population sizes, problem types (i.e. uni-modal, multi-modal, and composite), problem dimensionalities, and mutation factor ranges are conducted by considering population diversity analysis for stagnation and trapping in local optimum situations. The studies are conducted on 28 benchmark functions provided for the IEEE CEC-2013 competition. Experimental results demonstrate high performance and convergence speed of the proposed MDEVM algorithm.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.