Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining Top-K Co-Occurrence Items (1512.07806v1)

Published 24 Dec 2015 in cs.DB and cs.DS

Abstract: Frequent itemset mining has emerged as a fundamental problem in data mining and plays an important role in many data mining tasks, such as association analysis, classification, etc. In the framework of frequent itemset mining, the results are itemsets that are frequent in the whole database. However, in some applications, such recommendation systems and social networks, people are more interested in finding out the items that occur with some user-specified itemsets (query itemsets) most frequently in a database. In this paper, we address the problem by proposing a new mining task named top-k co-occurrence item mining, where k is the desired number of items to be found. Four baseline algorithms are presented first. Then, we introduce a special data structure named Pi-Tree (Prefix itemset Tree) to maintain the information of itemsets. Based on Pi-Tree, we propose two algorithms, namely PT (Pi-Tree-based algorithm) and PT-TA (Pi-Tree-based algorithm with TA pruning), for mining top-k co-occurrence items by incorporating several novel strategies for pruning the search space to achieve high efficiency. The performance of PT and PT-TA was evaluated against the four proposed baseline algorithms on both synthetic and real databases. Extensive experiments show that PT not only outperforms other algorithms substantially in terms execution time but also has excellent scalability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.