Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Algorithms for Online Convex Optimization with Long-term Constraints (1512.07422v1)

Published 23 Dec 2015 in stat.ML, cs.LG, and math.OC

Abstract: We present an adaptive online gradient descent algorithm to solve online convex optimization problems with long-term constraints , which are constraints that need to be satisfied when accumulated over a finite number of rounds T , but can be violated in intermediate rounds. For some user-defined trade-off parameter $\beta$ $\in$ (0, 1), the proposed algorithm achieves cumulative regret bounds of O(Tmax{$\beta$,1--$\beta$}) and O(T1--$\eta$/2)) for the loss and the constraint violations respectively. Our results hold for convex losses and can handle arbitrary convex constraints without requiring knowledge of the number of rounds in advance. Our contributions improve over the best known cumulative regret bounds by Mahdavi, et al. (2012) that are respectively O(T1/2) and O(T3/4) for general convex domains, and respectively O(T2/3) and O(T2/3) when further restricting to polyhedral domains. We supplement the analysis with experiments validating the performance of our algorithm in practice.

Citations (141)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.