Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Morphological Inflection Generation Using Character Sequence to Sequence Learning (1512.06110v3)

Published 18 Dec 2015 in cs.CL

Abstract: Morphological inflection generation is the task of generating the inflected form of a given lemma corresponding to a particular linguistic transformation. We model the problem of inflection generation as a character sequence to sequence learning problem and present a variant of the neural encoder-decoder model for solving it. Our model is language independent and can be trained in both supervised and semi-supervised settings. We evaluate our system on seven datasets of morphologically rich languages and achieve either better or comparable results to existing state-of-the-art models of inflection generation.

Citations (137)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.