Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Privacy by design in big data: An overview of privacy enhancing technologies in the era of big data analytics (1512.06000v1)

Published 18 Dec 2015 in cs.CR

Abstract: The extensive collection and processing of personal information in big data analytics has given rise to serious privacy concerns, related to wide scale electronic surveillance, profiling, and disclosure of private data. To reap the benefits of analytics without invading the individuals' private sphere, it is essential to draw the limits of big data processing and integrate data protection safeguards in the analytics value chain. ENISA, with the current report, supports this approach and the position that the challenges of technology (for big data) should be addressed by the opportunities of technology (for privacy). We first explain the need to shift from "big data versus privacy" to "big data with privacy". In this respect, the concept of privacy by design is key to identify the privacy requirements early in the big data analytics value chain and in subsequently implementing the necessary technical and organizational measures. After an analysis of the proposed privacy by design strategies in the different phases of the big data value chain, we review privacy enhancing technologies of special interest for the current and future big data landscape. In particular, we discuss anonymization, the "traditional" analytics technique, the emerging area of encrypted search and privacy preserving computations, granular access control mechanisms, policy enforcement and accountability, as well as data provenance issues. Moreover, new transparency and access tools in big data are explored, together with techniques for user empowerment and control. Achieving "big data with privacy" is no easy task and a lot of research and implementation is still needed. Yet, it remains a possible task, as long as all the involved stakeholders take the necessary steps to integrate privacy and data protection safeguards in the heart of big data, by design and by default.

Citations (96)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.