Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Subgraph Similarity Search in Large Graphs (1512.05256v1)

Published 16 Dec 2015 in cs.SI and physics.soc-ph

Abstract: One of the major challenges in applications related to social networks, computational biology, collaboration networks etc., is to efficiently search for similar patterns in their underlying graphs. These graphs are typically noisy and contain thousands of vertices and millions of edges. In many cases, the graphs are unlabeled and the notion of similarity is also not well defined. We study the problem of searching an induced subgraph in a large target graph that is most similar to the given query graph. We assume that the query graph and target graph are undirected and unlabeled. We use graphlet kernels \cite{shervashidze2009efficient} to define graph similarity. Graphlet kernels are known to perform better than other kernels in different applications. Our algorithm maps topological neighborhood information of vertices in the query and target graphs to vectors. These local topological informations are then combined to find a target subgraph having highly similar global topology with the given query graph. We tested our algorithm on several real world networks such as facebook network, google plus network, youtube network, amazon network etc. Most of them contain thousands of vertices and million edges. Our algorithm is able to detect highly similar matches when queried in these networks. Our multi-threaded implementation takes about one second to find the match on a 32 core machine, excluding the time for one time preprocessing. Computationally expensive parts of our algorithm can be further scaled to standard parallel and distributed frameworks like map-reduce.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.