Data-driven Sequential Monte Carlo in Probabilistic Programming (1512.04387v2)
Abstract: Most of Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) algorithms in existing probabilistic programming systems suboptimally use only model priors as proposal distributions. In this work, we describe an approach for training a discriminative model, namely a neural network, in order to approximate the optimal proposal by using posterior estimates from previous runs of inference. We show an example that incorporates a data-driven proposal for use in a non-parametric model in the Anglican probabilistic programming system. Our results show that data-driven proposals can significantly improve inference performance so that considerably fewer particles are necessary to perform a good posterior estimation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.