Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum Privacy-Preserving Data Mining (1512.04009v2)

Published 13 Dec 2015 in quant-ph, cs.CR, cs.DB, and cs.LG

Abstract: Data mining is a key technology in big data analytics and it can discover understandable knowledge (patterns) hidden in large data sets. Association rule is one of the most useful knowledge patterns, and a large number of algorithms have been developed in the data mining literature to generate association rules corresponding to different problems and situations. Privacy becomes a vital issue when data mining is used to sensitive data sets like medical records, commercial data sets and national security. In this Letter, we present a quantum protocol for mining association rules on vertically partitioned databases. The quantum protocol can improve the privacy level preserved by known classical protocols and at the same time it can exponentially reduce the computational complexity and communication cost.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.