Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Hidden Markov Model Based System for Entity Extraction from Social Media English Text at FIRE 2015 (1512.03950v1)

Published 12 Dec 2015 in cs.CL

Abstract: This paper presents the experiments carried out by us at Jadavpur University as part of the participation in FIRE 2015 task: Entity Extraction from Social Media Text - Indian Languages (ESM-IL). The tool that we have developed for the task is based on Trigram Hidden Markov Model that utilizes information like gazetteer list, POS tag and some other word level features to enhance the observation probabilities of the known tokens as well as unknown tokens. We submitted runs for English only. A statistical HMM (Hidden Markov Models) based model has been used to implement our system. The system has been trained and tested on the datasets released for FIRE 2015 task: Entity Extraction from Social Media Text - Indian Languages (ESM-IL). Our system is the best performer for English language and it obtains precision, recall and F-measures of 61.96, 39.46 and 48.21 respectively.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)