Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Sparse Generalized Principal Component Analysis for Large-scale Applications beyond Gaussianity (1512.03883v2)

Published 12 Dec 2015 in stat.CO and stat.ML

Abstract: Principal Component Analysis (PCA) is a dimension reduction technique. It produces inconsistent estimators when the dimensionality is moderate to high, which is often the problem in modern large-scale applications where algorithm scalability and model interpretability are difficult to achieve, not to mention the prevalence of missing values. While existing sparse PCA methods alleviate inconsistency, they are constrained to the Gaussian assumption of classical PCA and fail to address algorithm scalability issues. We generalize sparse PCA to the broad exponential family distributions under high-dimensional setup, with built-in treatment for missing values. Meanwhile we propose a family of iterative sparse generalized PCA (SG-PCA) algorithms such that despite the non-convexity and non-smoothness of the optimization task, the loss function decreases in every iteration. In terms of ease and intuitive parameter tuning, our sparsity-inducing regularization is far superior to the popular Lasso. Furthermore, to promote overall scalability, accelerated gradient is integrated for fast convergence, while a progressive screening technique gradually squeezes out nuisance dimensions of a large-scale problem for feasible optimization. High-dimensional simulation and real data experiments demonstrate the efficiency and efficacy of SG-PCA.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)