Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cross-Validated Variable Selection in Tree-Based Methods Improves Predictive Performance (1512.03444v1)

Published 10 Dec 2015 in stat.ML

Abstract: Recursive partitioning approaches producing tree-like models are a long standing staple of predictive modeling, in the last decade mostly as ``sub-learners'' within state of the art ensemble methods like Boosting and Random Forest. However, a fundamental flaw in the partitioning (or splitting) rule of commonly used tree building methods precludes them from treating different types of variables equally. This most clearly manifests in these methods' inability to properly utilize categorical variables with a large number of categories, which are ubiquitous in the new age of big data. Such variables can often be very informative, but current tree methods essentially leave us a choice of either not using them, or exposing our models to severe overfitting. We propose a conceptual framework to splitting using leave-one-out (LOO) cross validation for selecting the splitting variable, then performing a regular split (in our case, following CART's approach) for the selected variable. The most important consequence of our approach is that categorical variables with many categories can be safely used in tree building and are only chosen if they contribute to predictive power. We demonstrate in extensive simulation and real data analysis that our novel splitting approach significantly improves the performance of both single tree models and ensemble methods that utilize trees. Importantly, we design an algorithm for LOO splitting variable selection which under reasonable assumptions does not increase the overall computational complexity compared to CART for two-class classification. For regression tasks, our approach carries an increased computational burden, replacing a O(log(n)) factor in CART splitting rule search with an O(n) term.

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.