Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed Methods for Computing Approximate Equilibria (1512.03315v1)

Published 10 Dec 2015 in cs.GT

Abstract: We present a new, distributed method to compute approximate Nash equilibria in bimatrix games. In contrast to previous approaches that analyze the two payoff matrices at the same time (for example, by solving a single LP that combines the two players payoffs), our algorithm first solves two independent LPs, each of which is derived from one of the two payoff matrices, and then compute approximate Nash equilibria using only limited communication between the players. Our method has several applications for improved bounds for efficient computations of approximate Nash equilibria in bimatrix games. First, it yields a best polynomial-time algorithm for computing \emph{approximate well-supported Nash equilibria (WSNE)}, which guarantees to find a 0.6528-WSNE in polynomial time. Furthermore, since our algorithm solves the two LPs separately, it can be used to improve upon the best known algorithms in the limited communication setting: the algorithm can be implemented to obtain a randomized expected-polynomial-time algorithm that uses poly-logarithmic communication and finds a 0.6528-WSNE. The algorithm can also be carried out to beat the best known bound in the query complexity setting, requiring $O(n \log n)$ payoff queries to compute a 0.6528-WSNE. Finally, our approach can also be adapted to provide the best known communication efficient algorithm for computing \emph{approximate Nash equilibria}: it uses poly-logarithmic communication to find a 0.382-approximate Nash equilibrium.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.