Spectral Compressed Sensing via CANDECOMP/PARAFAC Decomposition of Incomplete Tensors (1512.03224v1)
Abstract: We consider the line spectral estimation problem which aims to recover a mixture of complex sinusoids from a small number of randomly observed time domain samples. Compressed sensing methods formulates line spectral estimation as a sparse signal recovery problem by discretizing the continuous frequency parameter space into a finite set of grid points. Discretization, however, inevitably incurs errors and leads to deteriorated estimation performance. In this paper, we propose a new method which leverages recent advances in tensor decomposition. Specifically, we organize the observed data into a structured tensor and cast line spectral estimation as a CANDECOMP/PARAFAC (CP) decomposition problem with missing entries. The uniqueness of the CP decomposition allows the frequency components to be super-resolved with infinite precision. Simulation results show that the proposed method provides a competitive estimate accuracy compared with existing state-of-the-art algorithms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.