Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Distributed SGD with Variance Reduction (1512.02970v3)

Published 9 Dec 2015 in cs.LG, cs.DC, math.OC, and stat.ML

Abstract: Stochastic Gradient Descent (SGD) has become one of the most popular optimization methods for training machine learning models on massive datasets. However, SGD suffers from two main drawbacks: (i) The noisy gradient updates have high variance, which slows down convergence as the iterates approach the optimum, and (ii) SGD scales poorly in distributed settings, typically experiencing rapidly decreasing marginal benefits as the number of workers increases. In this paper, we propose a highly parallel method, CentralVR, that uses error corrections to reduce the variance of SGD gradient updates, and scales linearly with the number of worker nodes. CentralVR enjoys low iteration complexity, provably linear convergence rates, and exhibits linear performance gains up to hundreds of cores for massive datasets. We compare CentralVR to state-of-the-art parallel stochastic optimization methods on a variety of models and datasets, and find that our proposed methods exhibit stronger scaling than other SGD variants.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.