Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Algebraic Construction of Tail-Biting Trellises for Linear Block Codes (1512.02782v3)

Published 9 Dec 2015 in cs.IT and math.IT

Abstract: In this paper, we present an algebraic construction of tail-biting trellises. The proposed method is based on the state space expressions, i.e., the state space is the image of the set of information sequences under the associated state matrix. Then combining with the homomorphism theorem, an algebraic trellis construction is obtained. We show that a tail-biting trellis constructed using the proposed method is isomorphic to the associated Koetter-Vardy (KV) trellis and tail-biting Bahl-Cocke-Jelinek-Raviv (BCJR) trellis. We also evaluate the complexity of the obtained tail-biting trellises. On the other hand, a matrix consisting of linearly independent rows of the characteristic matrix is regarded as a generalization of minimal-span generator matrices. Then we show that a KV trellis is constructed based on an extended minimal-span generator matrix. It is shown that this construction is a natural extension of the method proposed by McEliece (1996).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.