Algebraic Construction of Tail-Biting Trellises for Linear Block Codes (1512.02782v3)
Abstract: In this paper, we present an algebraic construction of tail-biting trellises. The proposed method is based on the state space expressions, i.e., the state space is the image of the set of information sequences under the associated state matrix. Then combining with the homomorphism theorem, an algebraic trellis construction is obtained. We show that a tail-biting trellis constructed using the proposed method is isomorphic to the associated Koetter-Vardy (KV) trellis and tail-biting Bahl-Cocke-Jelinek-Raviv (BCJR) trellis. We also evaluate the complexity of the obtained tail-biting trellises. On the other hand, a matrix consisting of linearly independent rows of the characteristic matrix is regarded as a generalization of minimal-span generator matrices. Then we show that a KV trellis is constructed based on an extended minimal-span generator matrix. It is shown that this construction is a natural extension of the method proposed by McEliece (1996).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.