Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

On Variational Expressions for Quantum Relative Entropies (1512.02615v2)

Published 8 Dec 2015 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: Distance measures between quantum states like the trace distance and the fidelity can naturally be defined by optimizing a classical distance measure over all measurement statistics that can be obtained from the respective quantum states. In contrast, Petz showed that the measured relative entropy, defined as a maximization of the Kullback-Leibler divergence over projective measurement statistics, is strictly smaller than Umegaki's quantum relative entropy whenever the states do not commute. We extend this result in two ways. First, we show that Petz' conclusion remains true if we allow general positive operator valued measures. Second, we extend the result to Renyi relative entropies and show that for non-commuting states the sandwiched Renyi relative entropy is strictly larger than the measured Renyi relative entropy for $\alpha \in (\frac12, \infty)$, and strictly smaller for $\alpha \in [0,\frac12)$. The latter statement provides counterexamples for the data-processing inequality of the sandwiched Renyi relative entropy for $\alpha < \frac12$. Our main tool is a new variational expression for the measured Renyi relative entropy, which we further exploit to show that certain lower bounds on quantum conditional mutual information are superadditive.

Citations (82)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper: