Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Risk Minimization in Structured Prediction using Orbit Loss (1512.02033v2)

Published 7 Dec 2015 in cs.LG

Abstract: We introduce a new surrogate loss function called orbit loss in the structured prediction framework, which has good theoretical and practical advantages. While the orbit loss is not convex, it has a simple analytical gradient and a simple perceptron-like learning rule. We analyze the new loss theoretically and state a PAC-Bayesian generalization bound. We also prove that the new loss is consistent in the strong sense; namely, the risk achieved by the set of the trained parameters approaches the infimum risk achievable by any linear decoder over the given features. Methods that are aimed at risk minimization, such as the structured ramp loss, the structured probit loss and the direct loss minimization require at least two inference operations per training iteration. In this sense, the orbit loss is more efficient as it requires only one inference operation per training iteration, while yields similar performance. We conclude the paper with an empirical comparison of the proposed loss function to the structured hinge loss, the structured ramp loss, the structured probit loss and the direct loss minimization method on several benchmark datasets and tasks.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.