Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Routing Disjoint Paths in Bounded Treewidth Graphs (1512.01829v1)

Published 6 Dec 2015 in cs.DS

Abstract: We study the problem of routing on disjoint paths in bounded treewidth graphs with both edge and node capacities. The input consists of a capacitated graph $G$ and a collection of $k$ source-destination pairs $\mathcal{M} = {(s_1, t_1), \dots, (s_k, t_k)}$. The goal is to maximize the number of pairs that can be routed subject to the capacities in the graph. A routing of a subset $\mathcal{M}'$ of the pairs is a collection $\mathcal{P}$ of paths such that, for each pair $(s_i, t_i) \in \mathcal{M}'$, there is a path in $\mathcal{P}$ connecting $s_i$ to $t_i$. In the Maximum Edge Disjoint Paths (MaxEDP) problem, the graph $G$ has capacities $\mathrm{cap}(e)$ on the edges and a routing $\mathcal{P}$ is feasible if each edge $e$ is in at most $\mathrm{cap}(e)$ of the paths of $\mathcal{P}$. The Maximum Node Disjoint Paths (MaxNDP) problem is the node-capacitated counterpart of MaxEDP. In this paper we obtain an $O(r3)$ approximation for MaxEDP on graphs of treewidth at most $r$ and a matching approximation for MaxNDP on graphs of pathwidth at most $r$. Our results build on and significantly improve the work by Chekuri et al. [ICALP 2013] who obtained an $O(r \cdot 3r)$ approximation for MaxEDP.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.