Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation (1512.01752v2)

Published 6 Dec 2015 in cs.LG and cs.AI

Abstract: Traditional graph-based semi-supervised learning (SSL) approaches, even though widely applied, are not suited for massive data and large label scenarios since they scale linearly with the number of edges $|E|$ and distinct labels $m$. To deal with the large label size problem, recent works propose sketch-based methods to approximate the distribution on labels per node thereby achieving a space reduction from $O(m)$ to $O(\log m)$, under certain conditions. In this paper, we present a novel streaming graph-based SSL approximation that captures the sparsity of the label distribution and ensures the algorithm propagates labels accurately, and further reduces the space complexity per node to $O(1)$. We also provide a distributed version of the algorithm that scales well to large data sizes. Experiments on real-world datasets demonstrate that the new method achieves better performance than existing state-of-the-art algorithms with significant reduction in memory footprint. We also study different graph construction mechanisms for natural language applications and propose a robust graph augmentation strategy trained using state-of-the-art unsupervised deep learning architectures that yields further significant quality gains.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.