Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hybrid Approach for Inductive Semi Supervised Learning using Label Propagation and Support Vector Machine (1512.01568v1)

Published 2 Dec 2015 in cs.LG and cs.DC

Abstract: Semi supervised learning methods have gained importance in today's world because of large expenses and time involved in labeling the unlabeled data by human experts. The proposed hybrid approach uses SVM and Label Propagation to label the unlabeled data. In the process, at each step SVM is trained to minimize the error and thus improve the prediction quality. Experiments are conducted by using SVM and logistic regression(Logreg). Results prove that SVM performs tremendously better than Logreg. The approach is tested using 12 datasets of different sizes ranging from the order of 1000s to the order of 10000s. Results show that the proposed approach outperforms Label Propagation by a large margin with F-measure of almost twice on average. The parallel version of the proposed approach is also designed and implemented, the analysis shows that the training time decreases significantly when parallel version is used.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.