Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

State of the Art Control of Atari Games Using Shallow Reinforcement Learning (1512.01563v2)

Published 4 Dec 2015 in cs.LG

Abstract: The recently introduced Deep Q-Networks (DQN) algorithm has gained attention as one of the first successful combinations of deep neural networks and reinforcement learning. Its promise was demonstrated in the Arcade Learning Environment (ALE), a challenging framework composed of dozens of Atari 2600 games used to evaluate general competency in AI. It achieved dramatically better results than earlier approaches, showing that its ability to learn good representations is quite robust and general. This paper attempts to understand the principles that underlie DQN's impressive performance and to better contextualize its success. We systematically evaluate the importance of key representational biases encoded by DQN's network by proposing simple linear representations that make use of these concepts. Incorporating these characteristics, we obtain a computationally practical feature set that achieves competitive performance to DQN in the ALE. Besides offering insight into the strengths and weaknesses of DQN, we provide a generic representation for the ALE, significantly reducing the burden of learning a representation for each game. Moreover, we also provide a simple, reproducible benchmark for the sake of comparison to future work in the ALE.

Citations (111)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube